Strabo, Geography (English) (XML Header) [genre: prose] [word count] [Str.].
<<Str. 2.1.32 Str. 2.1.35 (Greek English(2)) >>Str. 2.1.37

2.1.34

We will now return at once to Hipparchus, and see what comes next. Continuing to palm assumptions of his own [upon Eratosthenes], he goes on to refute, with geometrical accuracy, statements which that author had made in a mere general way. Eratosthenes, he says, estimates that there are 6700 stadia between Babylon and the Caspian Gates, and from Babylon to the frontiers of Carmania and Persia above 9000 stadia; this he supposes to lie in a direct line towards the equinoctial rising, [Note] and perpendicular to the common side of his second and third sections. Thus, according to his plan, we should have a right-angled triangle, with the right angle next to the frontiers of Carmania, and its hypotenuse less than one of the sides about the right angle! Consequently Persia should be included in the second section. [Note]

-- 132 --

To this we reply, that the line drawn from Babylon to Carmania was never intended as a parallel, nor yet that which divides the two sections as a meridian, and that therefore nothing has been laid to his charge, at all events with any just foundation. In fact, Eratosthenes having stated the number of stadia from the Caspian Gates to Babylon as above given, [Note] [from the Caspian Gates] to Susa 4900 stadia, and from Babylon [to Susa] 3400 stadia, Hipparchus runs away from his former hypothesis, and says that [by drawing lines from] the Caspian Gates, Susa, and Babylon, an obtuse-angled triangle would be the result, whose sides should be of the length laid down, and of which Susa would form the obtuse angle. He then argues, that according to these premises, the meridian drawn from the Gates of the Caspian will intersect the parallel of Babylon and Susa 4400 stadia more to the west, than would a straight line drawn from the Caspian to the confines of Carmania and Persia; and that this last line, forming with the meridian of the Caspian Gates half a right angle, would lie exactly in a direction midway between the south and the equinoctial rising. Now as the course of the Indus is parallel to this line, it cannot flow south on its descent from the mountains, as Eratosthenes asserts, but in a direction lying between the south and the equinoctial rising, as laid down in the ancient charts. But who is there who will admit this to be an obtuse-angled triangle, without also admitting that it contains a right angle? Who will agree that the line from Babylon to Susa, which forms one side of this obtuse-angled triangle, lies parallel, without admitting the same of the whole line as far as Carmania? or that the line drawn from the Caspian Gates to the frontiers of Carmania is parallel to the Indus? Nevertheless, without this the reasoning [of Hipparchus] is worth nothing

Eratosthenes himself also states, [continues Hipparchus, [Note]]

-- 133 --

that the form of India is rhomboidal; and since the whole eastern border of that country has a decided tendency towards the east, but more particularly the extremest cape, [Note] which lies more to the south than any other part of the coast, the side next the Indus must be the same. 2.1.35

These arguments may be very geometrical, but they are not convincing. After having himself invented these various difficulties, he dismisses them, saying, Had [Eratosthenes] been chargeable for small distances only, he might have been excused; but since his mistakes involve thousands of stadia, we cannot pardon him, more especially since he has laid it down that at a mere distance of 400 stadia, [Note] such as that between the parallels of Athens and Rhodes, there is a sensible variation [of latitude]. But these sensible variations are not all of the same kind, the distance [involved therein] being in some instances greater, in others less; greater, when for our estimate of the climata we trust merely to the eye, or are guided by the vegetable productions and the temperature of the air; less, when we employ gnomons and dioptric instruments. Nothing is more likely than that if you measure the parallel of Athens, or that of Rhodes and Caria, by means of a gnomon, the difference resulting from so many stadia [Note] will be sensible. But when a geographer, in order to trace a line from west to east, 3000 stadia broad, makes use of a chain of mountains 40,000 stadia long, and also of a sea which extends still farther 30,000 stadia, and farther wishing to point out the situation of the different parts of the habitable earth relative to this line, calls some southern, others northern, and finally lays out what he calls the sections, each section consisting of divers countries, then we ought carefully to examine in what acceptation he uses his terms; in what sense he says that such a side [of any section] is the north side, and what other is the south, or east, or west side. If he does not take pains to avoid great errors, he deserves to be blamed, but should he be guilty merely of trifling inaccuracies, he should be forgiven. But here nothing shows thoroughly that Era-

-- 134 --

tosthenes has committed either serious or slight errors, for on one hand what he may have said concerning such great distances, can never be verified by a geometrical test, and on the other, his accuser, while endeavouring to reason like a geometrician, does not found his arguments on any real data, but on gratuitous suppositions.



Strabo, Geography (English) (XML Header) [genre: prose] [word count] [Str.].
<<Str. 2.1.32 Str. 2.1.35 (Greek English(2)) >>Str. 2.1.37

Powered by PhiloLogic